Linux: Hardware Switch Support

Pavel Simerda

Prehistory

<D 2,

:
L
‘
:
{

2008: DSA tagging protocol & switch port devices

net: Distributed Switch Architecture protocol support

Distributed Switch Architecture is a protocol for managing hardware
switch chips. It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.

The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:

fmm + e +
| | RGMII | |

| e S + SEces 1000baseT MDI ("WAN")
| [6= poG bRt 1000baseT MDI ("LAN1")
| CPU [| ethernet +--———- 100@baseT MDI ("LAN2")
| [MIImgmt| switch +--————- 1000baseT MDI ("LAN3")
| Fe=ss=as + w/5 PHYs +--————- 1000baseT MDI ("LAN4")
I

2013: swconfig & VLAN tagging

VLANS on "switch0"

VLAN ID CPU (eth0) CPU (eth1) LAN1

tagged v untagged v untagged v untagged v untagged v

off tagged v off off off untagged v

config switch
option name 'switch@'
option reset '1°'
option enable_vlan '1'

config switch_vlan
option device 'switch@'
option vlan '1'
option ports '@ 1 2 3 5t°
option vid '1'

config switch_vlan
option device 'switch@'
option vlan '2'
option ports '4 6t°'
option vid '2'

2014: switchdev framework

author Jiri Pirko <jiri@resnulli.us> 2014-11-28 14:34:17 +0100
committer David S. Miller <davem@davemloft.net> 2014-12-02 20:01:20 -0800
commit 007f790c8276271de26416f90d55561bcc96588a (patch)

tree 03a55b7897402e9daa8af64ea2c81d5236f77367

parent 02637fce3e@103ba@86b9c33b6d529e69460e4b6 (diff)

download 1inux-Ge7f790c8276271de26416f90d55561bcc96588.tar.gz

net: introduce generic switch devices support

The goal of this 1is to provide a possibility to support various switch
chips. Drivers should implement relevant ndos to do so. Now there is
only one ndo defined:

- for getting physical switch id is in place.

Note that user can use random port netdevice to access the switch.

2015: Bridge offloading via DSA

author Florian Fainelli <f.fainelli@gmail.com> 2015-02-24 13:15:33 -0800
committer David S. Miller <davem@davemloft.net> 2015-02-25 17:03:38 -0500
commit b73adef67765b72f2a0d01ef15aff9d784dc85da (patch)

tree :

parent (diff)

download 5affod784dc85da.tar.gz

net: dsa: integrate with SWITCHDEV for HW bridging

In order to support bridging offloads in DSA switch drivers, select
NET_SWITCHDEV to get access to the port_stp_update and parent_get_id
NDOs that we are required to implement.

To facilitate the integratation at the DSA driver level, we implement 3
types of operations:

- port_join_bridge
- port_leave_bridge
- port_stp_update

DSA will resolve which switch ports that are currently bridge port
members as some Switch hardware/drivers need to know about that to limit
the register programming to just the relevant registers (especially for

slow MDIO buses).

2017: DSA @ Netdev Conf

Distributed Switch Architecture,
A.K.A. DSA

1* Andrew Lunn, 2" Vivien Didelot, 3" Florian Fainelli

landrew @lunn.ch, en.didelot@s

Abstract

The Distributed Switch Architecture was first introduced to
Linux nearly 10 years ago. After being mostly quiet for 6
years, it ntly became actively worked on again by a group
of tenacious contributors,

In this paper, we will cover its design goals and paradigms and
why they make it a good fit for supporting small home/office
routers and switches. We will also cover the work that was
done over the past 4 years, the relationship with switchdev and
the networking stack, and finally give a heads-up on the up-
coming developments to be expected.

Keywords
DSA, Distributed Switch Architecture, Linux kernel network
stack, SOHO switches, switchdeyv.

Introduction
uted Switch Architecture is a Marvell SOHO switch
term. However, as is often the case with the Linux Kernel,
the code to support it has been generalised, and now supports

virfairelinux

m, *f.fainelli @ gmail.com

Figure 1: The Basic DSA setup

Bridge device: br-lan

VLAN ID 3 lanl * lan3

config device
option name 'br-lan
option type 'bridge
list ports 'lani'
list ports 'lan2'
list ports 'lan3'
list ports 'lan4'

config bridge-vlan
option device 'br-lan'
option vlan '1'
list ports 'lanl'
list ports 'lan2'

config bridge-vlan
option device 'br-lan'
option vlan '2'
list ports 'lan3'
list ports 'lan4'

Why is DSA so important?

e Forward

DSA
o e From CPU
SWITCH T C P U
O
©

Special incoming/outgoing frames

Spanning tree — STP, RSTP, MSTP
Discovery — LLDP
Bonding — LACP

Merge branch 'net-bridge-multiple-spanning-trees'

2022: MSTI state setting

net: bridge: Multiple Spanning Trees

The bridge has had per-VLAN STP support for a while now, since:
https://lore.kernel.org/netdev/20200124114022.10883-1-nikolay@cumulusnetworks.com/
The current implementation has some problems:

- The mapping from VLAN to STP state is fixed as 1:1, i.e. each VLAN

Incompatible per-VLAN state since 2020
Pe r- M STI State Setti ng Z}zu;iojiéz)iﬁ:ln’zsifixlig;’c::?re the model is that multiple VLANs

Because of the way that the standard is written, presumably, this is
also reflected in hardware implementations. It is not uncommon for a

‘ S I State Su Ort switch to support the full 4k range of VIDs, but that the pool of
MST instances is much smaller. Some examples:
. . . Marvell LinkStreet (mv88e6xxx): 4k VLANs, but only 64 MSTIs
Offloading via switchdev Rerochip Sparx_sic 4k Vs, but onty 126 HST
Microchip SparX-5i: 4k VLANs, but only 128 MSTIs
By default, the feature is enabled, and there is no way to disable
it. This makes it hard to add offloading in a backwards compatible

way, since any underlying switchdevs have no way to refuse the
function if the hardware does not support it

- The port-global STP state has precedence over per-VLAN states. In
MSTP, as far as I understand it, all VLANs will use the common
spanning tree (CST) by default - through traffic engineering you can
then optimize your network to group subsets of VLANs to use
different trees (MSTI). To my understanding, the way this is
typically managed in silicon is roughly:

Incoming packet:

| DA | SA | 882.1Q VID=X | ET | Payload ...

|
5\ :
| +--> | VID | Members |

-
PVID ——>|/ |
| 1] 0001001 | ... | O]
| 2| 0001010 | ... | 1@ |
| 3] 0001100 | ... | 10 |
' H

'=>| MSTI | Fwding |
e ———
| o | 11111 | 111116 |
| 1 | 110111 |

110111 |

Linux as a switch operating system

N
Pavel Simerda

speaker@simerda.eu

