

Rise of the Merchant Silicon

Next gen ASICs for the peering fabric

Confidential. Copyright © Arista 2025. All rights reserved.

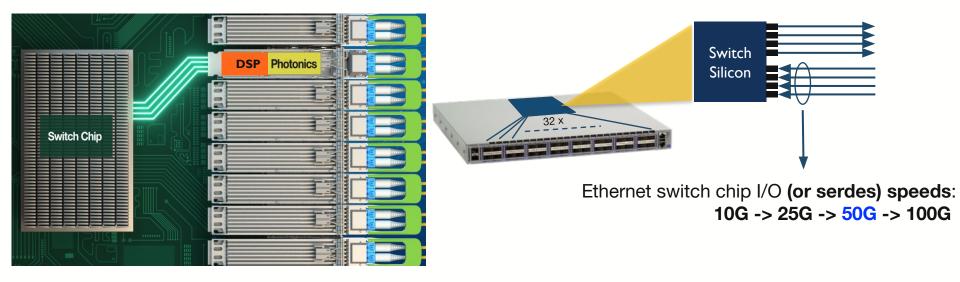
Ethernet Switch Revenue Forecast

Source: Dell'Oro March 2022 - Long Term Ethernet Switch Forecast

800G and 1600G expected to be 45% of Market in 2026

400G and below expected to be 55% of Market in 2026

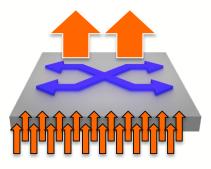
ARISTA


Single-chip Switch Bandwidth & Serdes Speeds

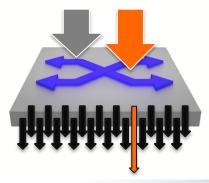
Confidential. Copyright © Arista 2025. All rights reserved.

SERDES Speeds are Key to Scaling networks

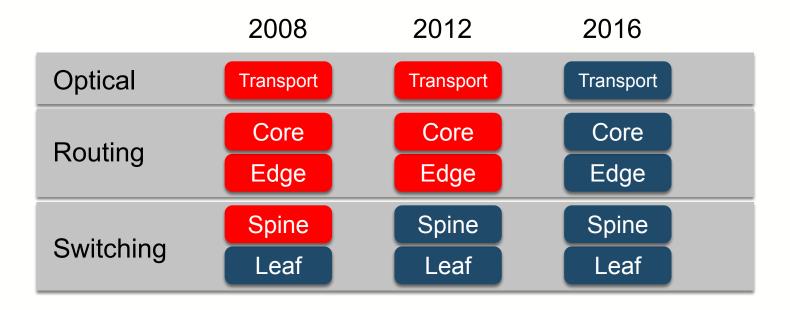
- Serdes (or Serializer-Deserializers) refer to the technology used for high-speed chip I/O
- Serdes speeds place a fundamental limit on datacenter bandwidth
- The easiest way to go faster is (for serdes speeds) to go Faster



"The easiest way to go faster is to go faster"



When Buffers Matter in Networks


Incast (Many to Fewer)

Speed Change (Faster to Slower)

The Evolution of Merchant Silicon

Proprietary Chips Merchant Silicon

Confidential. Copyright © Arista 2025. All rights reserved.

Process Technology Improvements (TSMC)

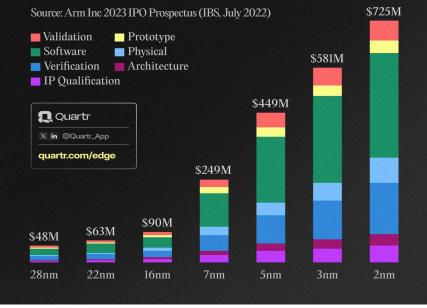
Process Node	7nm	5nm	3nm
Relative Density	1	1.5	2.25
Speed @ IsoPower	1	1.15	1.4
Power @ IsoSpeed	1	0.8	0.6
Volume Manufacturing	2019	2021	2023

Each process generation enables more throughput, better Power Efficiency, more buffers, bigger routing tables, etc

Confidential. Copyright © Arista 2025. All rights reserved.

Cost of silicon design

Cost of design (aka tape out) has risen significantly


- 28nm: 48M\$
- 22nm: 63M\$ +33%
- 16nm: 90M\$ +43%
- 7nm: 249M\$ +176%
- 5nm: 449M\$ +80%
- 3nm: 581M\$ +30%
- 2nm: 725M\$ +25% (new: ~ 2nd half of 2025)

This favors merchant silicon because of higher volume

This also leads to:

- Lower cost / better economy of scale
- Faster product cycles
- Faster innovation (because of shorter cycles)
- Lower power consumption
- Better scale
- More features (not always but often)

Cost of Chip Design by Nanometer

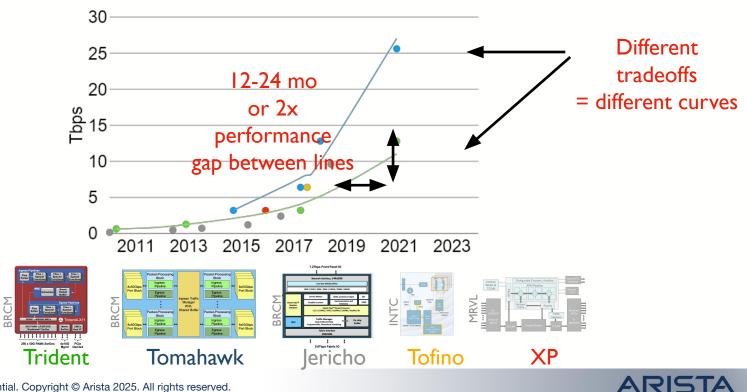
Choices in Switching Silicon

All chip makers have access to the same technology

- same fabs and processes
- same memories, TCAMs, serdes
- same clock rate

Differences arise primarily because of

- design tradeoffs for different use cases
- process shifts (28nm -> 16nm -> 7nm -> 5nm)
- faster innovation cycles



There is <u>no</u> fundamental advantage to proprietary silicon

Merchant Silicon Trajectory

10 years at Arista, across chip families

Confidential. Copyright © Arista 2025. All rights reserved.

2024: Next Generation Silicon for Networks

Tofino

- very high density
- very high performance
- very low power per Gbps
- Highly flexible and programmable
- intermediate programming complexity
- deterministic, low latency

Tomahawk5

- 2x higher performance
- Up to 51.2 Tbps
 - 165MB Buffer
- Scale Out & High Radix

Trident4

- 4x higher performance
- Up to 12.8 Tbps
- 132MB Buffer
- Programmable Pipeline

Jericho2C+

- 50% higher performance
- 7.2 Tbps
- 2.7 Bpps
- Deep Buffers
- Extensible

٠

The last Tofino?

McKeown, Nick

Jan 30, 2023, 4:02:49 AM 🟠 🗰 :

Dear P4 Community

Since its introduction a decade ago, P4 has led to a Cambrian explosion of ideas including new protocols, new applications like in-band telemetry; and new testing, validation, and formal verification techniques. P4 has become the industry standard for programming and specifying forwarding behavior. As a measure of success, one in four papers published at ACM SIGCOMM 22 – the top contenence for networking research – are blue to P4 in some way.

A you may know, Intel resently announced that it will sing development of the next-generation Intel® Tofno® Untel®pert FahicP Processo (IPP) products currently on its roadmaps Newsex; we will continue to sail and approach or avoising fahicProproducts. Intel Tofno® IPP proved to the vori of hardy noce a hold will programmable switches without compromising on performance. Tofno's program independent switch architecture (IPSA) will have a lasting effect on how packet-processing pipelines are built; if has already influenced programmable products at the degree sub as a smittle can def UP.

Although Tofino's roadmap is curtailed, I'd like to make clear that the team here at Intel remains committed to P4 as the language of choice across a wide range of Intel products and platforms, including our IPUs (ASIC and FPGA). The mission of Intel Network and Edge (NEX) group remains unchanged: we design and sell products to enable network owners to decide how packets are processed and to deploy their own creative new solutions. P lia an essential part of our ordima for IPUs (ASIC PGAs, DPC), DPC, MC, and more

Intel remains committed to open source and we continue to contribute to, and support, the P4 community, including the design of the P4 language, standard architectures, control APIs, and applications. And we will continue to develop open-source targets like P4TC, which integrates P4 into the Linux kernel, bringing a new level of programmability to the network edge.

Together, as a community, we can feel proud for successfully fostering a "revolution" in how industry and researchers think about networks. In the past, behaviors were baked into fixed function hardware; today, we can specify and program behaviors in software that are compiled and deployed in-situ, allowing beautiful new ideas to be tested and deployed more quick). There is no going back.

P4 got its start when a small group got together to think about new abstractions for programmable networking. We've now grown into a vibrant community of researchers and practitioners who are pushing the boundaries of what's possible across the full range of programmable targets. I'm honored to be a part of this community and I'm inspired by what we've accompliabed and excited about what we will calieve in the future.

Nick McKeown Senior VP & GM, Senior Fellow Network and Edge Group (NEX Intel.

"As you may know, Intel recently announced that it will stop development of the next-generation Intel® Tofino® Intelligent Fabric Processor (IFP) products currently on its roadmap."

Public announcement by Nick McKeown (Intel Senior VP & GM) https://groups.google.com/a/lists.p4.org/g/p4-announce/c/frXi_jjmawE

2024: Next Generation Silicon for Networks

Tofino

- very high density
- very high performance
- very low power per Gbps
- Highly flexible and programmable
- intermediate programming complexity
- deterministic, low latency

Tomahawk5

- 2x higher performance
- Up to 51.2 Tbps
 - 165MB Buffer
- Scale Out & High Radix

Trident4

- 4x higher performance
- Up to 12.8 Tbps
- 132MB Buffer
- Programmable Pipeline

Jericho2C+

- 50% higher performance
- 7.2 Tbps
- 2.7 Bpps
- Deep Buffers
- Extensible

Tomahawk

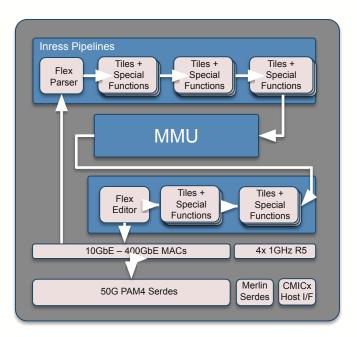
Tomahawk5 for AI Networks

- 2X performance
 - 51.2Tbps: 512 x 100G PAM4
 - Powerful new SerDes help in supporting LPO optics
- Efficient and Scalable Architecture
 - IPv4/v6, VxLAN and advanced instrumentation
- High Radix with flexible port speeds
 - Up to 320 front panel ports at 10G to 800G speeds
- Cloud optimized pipeline and unified packet buffer
 - 165MB shared buffer
 - Absorbs bursts 10x better

Tomahawk5						
Scheduler	Shared Packet Buffer					
	Packet Processing (L2/L3, IPv4/IPv6, MPLS)					
VLAN, Ingress, Egre	ess Field Processors					
Smart Hash Load Balance Engine	Advanced Instrumentation					
512 x 100G PAM4 SerDes						

Tomahawk Evolution

	7060X4 12.8T (TH3)	7060X5 25.6 (TH4)	7060X6 51.2 (TH5)	
Max I/O	256 x 50G 32 x 400G	512 x 50G 64 x 800G 512 x 50G 128 x 400G 64 x 400G 256 x 200G 512 x 100G 512 x 100G		2X I/O Increase
Max Throughput	12.8Tbps	25.6Tbps	51.2Tbps	
Logical Ports	144	256	320	
Buffer	64MB	114MB	165MB	Increased Buffer
L2 MAC	8K	12	Consistent Scale	
L3 Hosts	8К	Shared w	/ith ALPM	Consistent Scale
IPv4/IPv6 LPM (ALPM)				
Tunnel TCAM	2	56	512	
True Egress Mirror	No		Yes	Advanced Traffic Management
VXLAN	Not Supported Yes		Yes	
LPO Support	Not Supported	Not Supported	Yes	



Trident

Arista 7050X4 X.11(12.8T) vs X.9(8.0T) – Comparison

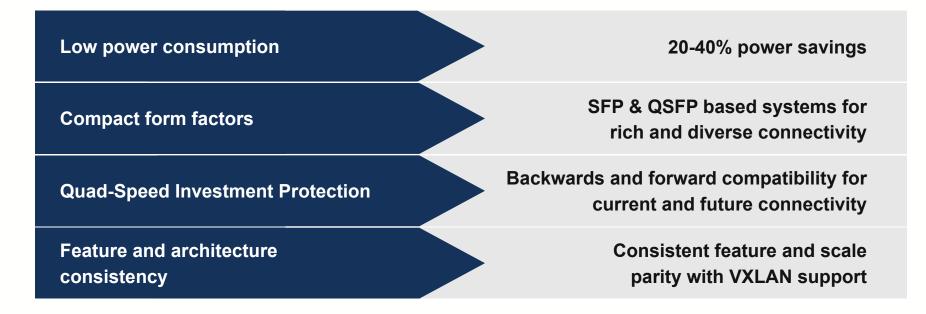
	7050X3 3.2T (TD3)	7050X4 12.8T (TD4)	7050X4 8T (TD4)
Max I/O	128 x 25G 32 x 100G	256 x 50G 32 x 400G	160 x 50G 20 x 400G
Max Throughput	3.2Tbps	12.8Tbps	8.0Tbps
Logical Ports	128	144	72
Buffer	32MB	132MB (Hybrid- Shared)	82MB (Fully Shared)
Latency	800ns	900ns	
L2 MAC	288K	128K	
L3 Hosts	168K	320K	
IPv4/IPv6 LPM (ALPM)	384K/192K	800K/500K	
MACsec & IPSec	No	No	Yes (4.8T)
Exact Match Rules	128K	256K*	
Counters	114K	256K	
ACLs	7K	11K + 2K egress	
VXLAN, uRPF, VLAN Translation bit wide entries	Yes	Yes	

Confidential. Copyright © Arista 2025. All rights reserved.

Consistent features

Advanced Instrumentation – In-band telemetry for latency monitoring

Dynamic Load Balancing – Traffic awareness improves ECMP performance

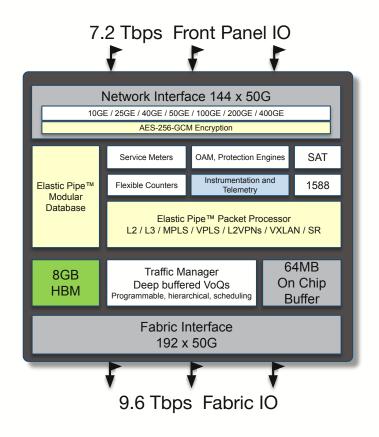

Traffic Scheduling – Microburst and Elephant Flow Detection and Prioritization

High-Performance Shared-Buffer memory – Improves burst absorption

Increased Routing and ACLs – Larger IPv4/v6 Scale and robustness

Trident4: Efficient System Design

Complete Portfolio - Uncompromised Features and Scale

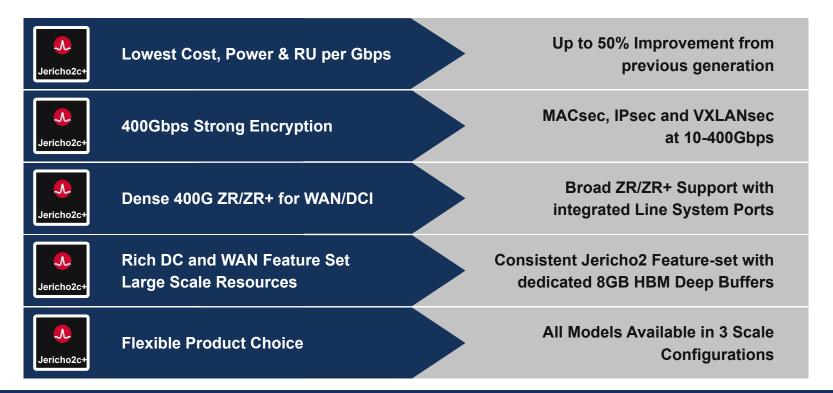


Jericho

16.8 Tbps - Jericho2C+

- 16.8 Tbps of High Performance with rich features
 - Total of 336 PAM-4 50G SerDes
 - 7.2Tbps Network I/O and 2.7Bpps packet processing
 - Flexible Network Interfaces 10G to 400G
 - Integrated TunnelSec Encryption (MACsec, IPsec, VXLANsec)
- Flexible Lookup Tables and Programmable Pipeline
 - Fungible on chip tables allow multiple use case profiles
 - Off-chip expandability with External table expansion (KBP)
 - Flexible Pipeline allows reconfiguration of forwarding
- Hierarchical Traffic Management with Deep Buffer
 - 8GB High Bandwidth Memory (HBM)
 - 64MB On Chip Buffer
- Network Instrumentation and Telemetry
 - Hardware Accelerator
 - Monitor of large numbers of sessions

Consistent System Resources: J2C+/J2/J2C/Q2C


	R3 Series		R3K Series			
Profile	L3 (default)	Balanced	L3-XL (default)	L3-XXL	L3-XXXL	Balanced-XL
ARP Entries	88k	80k	112k	112k	80k	96k
MAC Addresses	224k	224k	256k	192k	384k	256k
IPv4 Unicast Routes	1450k	800k	2250k	2850k	3950k	1850k
Additional IPv4 Unicast Routes with FlexRoute	+1,792k	+1,792k	+2,048k	+1,536k	+3,072k	+2,048k
IPv6 Unicast Routes	433-483k	250-267k	683-750k	833-950k	1100-1317k	567-617k
Multicast Routes	128k	128k	128k	128k	128k	128k
TCAM ACL Entries (Per chip)	24k	24k	24k	24k	24k	24k
Traffic Policy ACL IPv4 Prefixes	30k	30k	430k	296k	30k	430k
Traffic Policy ACL IPv6 Prefixes	10k	10k	150k	100k	10k	150k
ECMP	512-Way	512-Way	512-Way	512-Way	512-Way	512-Way

Maximum values dependent on shared resources / user configuration

Jericho2 hardware resources are fungible. Values shown are unidimensional maxima for default profiles

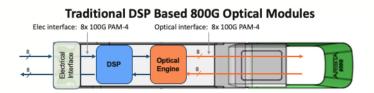
Jericho2C+ - The Engine for 400Gbps

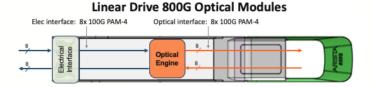
Complete Portfolio - Uncompromised Features and Scale

Jericho based Portfolio

	R Series	R2 Series	R3 Series	R3A Series	R4 Series
25-35T				16.8T	28.8T 144x106G PAM4 50GE - 800G Jericho3
15-25T		Flex Route		PAM4 Jericho2C+ - 400GE	800 GbE
5-15T	25G SerDes	Jericho+ 1.8T 72x25G NRZ 1GE - 1000E	Jericho2 PAM4 10GE 50G SerDes	AES-256-GCM TunnelSec	
≤2T	Jericho NRZ 1GE - 100GE		Modular DB		
	2016-17	2018-19	2020-21	2022-23	Future

ARISTA


Rate Adapting 1G optics


- Support 1G-LX and 1G-SX on platforms that have a minimum port speed of 10G
 - e.g. J2 based platforms have a minimum port speed of 10G
- Connect to other devices that use CL37 (optical) autoneg when the used platform does NOT support CL37 autoneg
 - some platforms support 1/10/25G but don't support CL37 autoneg

What are Linear Drive Optics Modules?

- 1. Linear Drive means no DSP or CDR in transceiver Just a linear driver to provide required modulator voltage
- 2. Requires a high-performance switch SERDES And very careful signal integrity design
- Achieves power savings similar to direct drive CPO While retaining the many advantages of pluggable optics modules Opportunity to cut optics module power by 50% and system power by up to 25%

How is AI transforming the service provider market?

- AI networks need VoQ based deep buffer fabrics
- Perfect fit for Jericho chips
- next version (J3) already in
- made for high amount of 800G interfaces
- also beneficial for SPs as BW demands still >>
- also SPs benefit from enhanced telemetry functions

Summary

Tomahawk

- Low latency
- Shallow Buffers
- High
 bandwidth
- Limited features

Trident

- Low latency
- Shallow Buffers
- Datacenter feature set
- Optimal in compute leaf/spine

Jericho

- Deep Buffer
- MPLS capable
- Hairpinning
- Optimal for arbitrary topologies

Thank You

arista.com

Confidential. Copyright © Arista 2025. All rights reserved.

31